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Ewald sum for electronic bilayer systems
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The potential energy of a bilayer two-dimensional system of charges, subject to periodic boundary condi-
tions, is derived. The technique of the Ewald sum has been employed so that the formulas can be applied
directly in Monte Carlo and molecular-dynamics computer simulations. Numerical evaluation of the potential
energy is carried out to confirm the parameter independence.
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I. INTRODUCTION

A bilayer system consisting of two two-dimensional la
ers of charges separated by a distanced comparable to the
interparticle separationa ~the Wigner-Seitz radius! within
the layers has been a subject of recent experimental rese
@1#. There have been some theoretical investigations of s
systems@2,3#, but we are not aware of any exact study usi
molecular-dynamics~MD! or Monte Carlo~MC! computer
simulations. For example, there are no exact results for
interlayer pair distribution functiong12(r ) or the intralayer
pair distribution functiong11(r ), and these play an importan
role in any theoretical analysis of such a system.

Periodic boundary conditions are an essential feature
MD or MC computer simulation studies. They remove s
face effects and enable a small number of particles to si
late a portion of an infinitely large system. However, Co
lomb forces between charged particles, which fall off slow
as 1/r , create a serious problem in computer simulatio
since their range is greater than half of the box length fo
typical simulation of a few hundred particles. The proble
of long-range forces is usually tackled using the Ewald s
@4#, a technique for efficiently summing the interaction of
ion with all its periodic images. It expresses the poten
energy in terms of two convergent summations, one in r
space and one in reciprocal-lattice space. The results of
an approach are in the existing literature and are widely u
for three-dimensional@5# and single-layer two-dimensiona
@6,7# one-component plasmas. In this paper, we present
calculation and analysis of the Ewald sum for a bilayer s
tem. Our formulas yield the appropriate potential and forc
under periodic boundary conditions and minimum imag
convention, and thus can be used in a MD or MC compu
simulation study of such a system.

II. METHOD

The system consists of electrons obeying classical st
tics, and charge neutrality is ensured by a uniform posit
background. The electrons are distributed in two plan
separated by a constant distance, but each electron is
strained to move only in the plane of its original distributio
Let the planes be atz50 andz5d. Consider square cell
1063-651X/2001/63~5!/056703~4!/$20.00 63 0567
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with side lengthL in each plane with basic cells centered
~0,0,0! and (0,0,d). Let there beN electrons in each cell with
an identical distribution in every cell of a given plane; how
ever, the distribution in the two planes may be different. L
the positions of the electrons in the planesz5d andz50 be
rW i5( x̃i ,ỹi ,0) andrW i5(xi ,yi ,0), respectively, fori from 1 to
N and letdW 5(0,0,d).

Let U denote the total potential energy of the two ba
cells due to interactions of these electrons with all othersU
takes into account the periodic boundary conditions a
minimum imaging convention. It is, therefore, appropria
for computer simulations and can be written asU5U1
1U21U12, where

U15 1
2 (

pW
8 (

i 51

N

(
j 51

N

w~ urW i2rW j1pW u!,

U25 1
2 (

pW
8 (

i 51

N

(
j 51

N

w~ urW i2rW j1pW u!, ~1!

U125(
pW

(
i 51

N

(
j 51

N

w~ urW i2rW j1pW 1dW u!.

The sum overpW is a sum over integersm1 ,m2 with pW
5L(m1 ,m2); the prime on this sum indicates that ifi 5 j , the
pW 50W term is to be omitted, andw(r )5e2/r is the Coulomb
potential withr subjected to the minimum imaging conve
tion.

A. Review of single-layer system

The potentialU1 which involves electrons in one plan
has been treated by the Ewald method. We will review
pertinent details here for completeness, and as a precurs
our solution of the bilayer problem. We use dimensionle
quantities: distances in units of the Wigner-Seitz radiusa and
energies in units ofe2/a.

The potential energy due to interaction between two p
ticles and their images in the same layer is
©2001 The American Physical Society03-1
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v~r i j !5(
pW

1

urW i2rW j1pW u $erfc~aurW i2rW j1pW u!

1erf~aurW i2rW j1pW u!% ~2!

for anya.0. The second term has two-dimensional perioL
and a Fourier series of the formSgWB(g;a)eigW •(rW i2rW j ) with
gW 52p(l1 ,l2)/L andg5ugW u, wherel1 ,l2 are integers, and

B~g;a!5
1

L2 E E drW
erf~ar !

r
e2 igW •rW

5
1

L2 E
0

`

dr erf~ar !2pJ0~gr !

5
2p

L2

erfc~g/2a!

g
if gÞ0, ~3!

B~0;a!5
2p

L2 lim
g→0

erfc~g/2a!21

g
52

2Ap

L2a
. ~4!

The potential energy per cell is then

U15
1

2 (
pW

8 (
i 51

N

(
j 51

N
erfc~aurW i2rW j1pW u!

urW i2rW j1pW u
2N~N21!

Ap

L2a

1
p

L2 (
gW Þ0W

erfc~g/2a!

g S (
i 51

N

(
j 51

N

cos@gW •~rW i2rW j !#2ND ,

~5!

with the Madelung energy term omitted. The parametera is
to be chosen so that both series in Eq.~5! converge rapidly;
it is essential that the value ofU1 be independent of the
choice ofa. We made a careful numerical study of this r
quirement as described in Sec. III. Note that the second t
will not contribute to the force.

If a is large enough, the only term that contributes to
sum in the real space is that withpW 50W , so it reduces to the
normal minimum image convention. However, a large va
of a would imply a large number of terms in the reciproc
space sum. In a simulation, the aim is to choose a valuea
and a sufficient number ofg vectors, so that the real-spac
sum can be truncated afterpW 50W and theg series converges
rapidly. It should be kept in mind that the larger the numb
of g vectors, the larger is the time required to compute
forces on each of the electrons. Thus a compromise betw
the time required for a simulation and the accuracy may
necessary.

B. Two-layer system

The potential energy per unit cell due to the interactio
between charges in different planes is given by
05670
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3
erfc~kurW i2rW j1dW 1pW u!1erf~kurW i2rW j1dW 1pW u!

urW i2rW j1dW 1pW u

~6!

for any k.0. The second term is periodic with two
dimensional periodL, and it has a Fourier series of the for

(
gW

C~g;k,d!(
i 51

N

(
j 51

N

eigW •~rW i2rW j !.

The coefficients forgÞ0 are

C~g;k,d!5
1

L2 E
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`
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erf~kAr 21d2!

Ar 21d2 E
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`
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erf~kAr 21d2!J0~gr !

[
2p

L2 c~g;k,d!. ~7!

The g50 term is important and must be treated carefully
requires evaluation of limg→0@gc(g;k,d)21#/g. This is
done by reversing the order in a double integral and expa
ing to first order ing:

gc~g;k,d!

5E
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`

dt
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E
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Thus,

lim
g→0

gc~g;k,d!21

g
52d erf~kd!2

1

Apk
e2k2d2

. ~9!

Using Eqs.~7! and ~9!, the final result for the potentia
energy due to interactions between the layers is obtaine

U125(
pW

(
i 51

N

(
j 51

N erfc~kurW i2rW j1dW 1pW u!

urW i2rW j1dW 1pW u

2N2
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L2 S d erf~kd!1
e2k2d2

Apk
D
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2p

L2 (
gW Þ0W

c~g;k,d!(
i 51

N

(
j 51

N

cos@gW •~rW i2rW j !#.

~10!

The corresponding single-layer formula~5! can be recovered
from this by settingd50, removingi 5 j terms in the sums
and counting onlyN particles. Comparing with the single
layer result, it should be noted that while the real-space te
look alike, the reciprocal-space terms are quite different
not a simple or obvious extension of the single-layer f
mula. The second term in Eq.~10! does not contribute to the
force. Equation~10! and the corresponding force equatio
@given in Eq.~11!# are new results and provide an algorith
for a computer simulation of a bilayer system of charg
particles.

III. NUMERICAL RESULTS

The single-layer expression~5! for U1 was evaluated nu
merically in the following way.

~i! Choose the side length of the basic cell~we took L
520.2!, some initial configuration ofN particles in it ~we
used 128!, and a value ofa. The value ofL corresponds to an
areal densityn![na251/p.

~ii ! Evaluate the three terms of Eq.~5! and their sum.
~iii ! Repeat for other values ofa, and then for other con

figurations. Excellent agreement confirming thea indepen-
dence of the results was obtained. Figure 1 shows the te
of U1 as a function ofa for aLP@5,16# for a certain con-
figuration. Only thepW 50W terms were included in ther-space
term together with the minimum image convention. In t
g-space term, we took the largest length oflW , where gW
52plW /L, to beA45. The agreement of the sum is excelle
in fact all aL in @6,16# give U152127.23570.002. This
analysis was done for various configurations and for ot
equilibrium configurations corresponding to a fixed tempe
ture.

The importance of the self-term is evident. Since t
r-space terms containa, the accuracy of these results justifi
neglect of thepW Þ0W terms there. The graphs suggest tha
choice of aL between 8 and 12 would be practical f
molecular-dynamics calculations: a smallera is preferred,
05670
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since it requires fewer terms in theg-space sum.
The same type of study was performed to confirm

correctness of expression~10! for the potential due to inter-
actions between two layers. We considered two separa
distances: d51 ~equal to the Wigner-Seitz radius! and d
50.5. We usedL520.2 with 128 particles in each basic ce
different configurations were selected in the two planes. C
culations of the terms inU12 were performed for four values

of the parameterk; again we usedpW 50W with minimum im-
age in ther-space term. For theg-space term, the integral
denoted byc(g;k,d) in Eq. ~7! were evaluated as require

for ulW u<A45. Results for a typical bilayer configuration a
given in Table I. The agreement for the total potential us
four values ofk is excellent here, as it is for other configu
rations. Again, the importance of the self-term is evident a

neglect ofpW Þ0W terms is justified. Admittedly, theg-space
terms are small for the chosen configurations; however,
magnitudes of the forces arising from these terms are sig
cant, and thek independence of the total force has also be
checked. We also checked thek independence for other equ
librium configurations.

FIG. 1. Dependence of the potential-energy terms for a sin
layer system onaL; both quantities are dimensionless.

TABLE I. Dependence of potential-energy terms for a bilay
system on the parameterk; all quantities in dimensionless units a
defined.

d kL U12 ~r space! U12 ~g space! U12 ~self! U12

0.5 6 360.1994 0.1035 2489.7370 2129.4341
0.5 8 243.8308 0.1464 2373.4060 2129.4289
0.5 10 175.3547 0.1810 2304.9620 2129.4263
0.5 15 87.8669 0.2474 2217.5158 2129.4016
1.0 6 268.0724 0.1002 2520.8738 2252.7012
1.0 8 161.5103 0.1395 2414.3475 2252.6976
1.0 10 102.3801 0.1679 2355.2451 2252.6970
1.0 15 35.7422 0.2167 2288.6396 2252.6808
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IV. CONCLUSION

The correctness of Eq.~10! having been confirmed, on
can now use Eqs.~1!, ~5!, and~10! to obtain the total force
on a particle due to particles in the same plane and in
other plane. For example, the result for particle 1 in pla
z50 is

FW ~rW i !52¹ rW1
~U11U12!

5
2p

L2 (
gW Þ0W

gW H 1

g
erfcS g

2a
D (

j 52

N

singW •~rW12rW j !

1c~g;k,d!(
j 51

N

singW •~rW12rW j !J 1(
pW

8

(
j 51

N sW i j

usW1 j u3 H erfc~ausW1 j u!1ausW i j u
2

Ap
e2a2usW i j u

2J
1(

pW
(
j 51

N dW 1 j

udW 1 j u3

3H erfc~kudW 1 j u!1kudW 1 j u
2

Ap
e2k2udW 1 j u

2J , ~11!
E

05670
e
e

wheresW1 j5rW12rW j1pW anddW 1 j5rW12rW j1dW 1pW .
These results suggest that a good choice of the param

a andk is 8/L. Further work has shown that for this choic
acceptable accuracy can be obtained usingA20 for the larg-

est ulW u; this corresponds to taking 38 terms in theg-space
sums in the expressions for potential energy and the fo
on the particles. At each instant considered in a dynam
calculation, the force acting on each of 2N particles must be
computed: itsg-space component contains 2N21 terms for
every vectorgW included. Obviously, it is important to kee
the maximumg as small as possible.

This paper was prompted by a need for molecul
dynamics calculations for an interacting bilayer plasma
different separations. We now have the appropriate exp
sions for the potential energy and forces required for suc
study. Multilayer systems can also be studied using gene
zations of these formulas.
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