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Ewald sum for electronic bilayer systems

R. E. Johnson
Department of Mathematics and Computer Science, Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4

S. Ranganathan
Department of Physics, Royal Military College of Canada, Kingston, Ontario, Canada K7K 7B4
(Received 14 November 2000; published 18 April 2001

The potential energy of a bilayer two-dimensional system of charges, subject to periodic boundary condi-
tions, is derived. The technique of the Ewald sum has been employed so that the formulas can be applied
directly in Monte Carlo and molecular-dynamics computer simulations. Numerical evaluation of the potential
energy is carried out to confirm the parameter independence.
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[. INTRODUCTION with side lengthL in each plane with basic cells centered at
(0,0,0 and (0,0ql). Let there beN electrons in each cell with
A bilayer system consisting of two two-dimensional lay- an identical distribution in every cell of a given plane; how-
ers of charges separated by a distadoceomparable to the ever, the distribution in the two planes may be different. Let
interparticle separatiom (the Wigner-Seitz radigswithin  the positions of the electrons in the plarzesd andz=0 be
the layers has been a subject of recent experimental researgh= (%; ,¥;,0) andr;=(x;,y;,0), respectively, fof from 1 to
[1]. There have been some theoretical investigations of suck and letd=(0,0d).

systemg2,3], but we are not aware of any exact study using et U denote the total potential energy of the two basic
molecular-dynamicsMD) or Monte Carlo(MC) computer  cells due to interactions of these electrons with all others;
simulations. For example, there are no exact results for th%kes into account the periodic boundary conditions and
interlayer pair distribution functioy;5(r) or the intralayer minimum imaging convention. It is, therefore, appropriate
pair distribution functiorgy(r), and these play an important for computer simulations and can be written Hs=U;
role in any theoretical analysis of such a system. +U,+Uy,, where

Periodic boundary conditions are an essential feature of
MD or MC computer simulation studies. They remove sur- N N
face effects and enable a small number of particles to simu- N .
late a portion of an infinitely large system. However, Cou- Us Ezﬁ 21 ,Zl o(If; +BD).
lomb forces between charged particles, which fall off slowly
as 1f, create a serious problem in computer simulations, NN
since their range is greater than half of the box length for a 1O
typical simulation of a few hundred particles. The problem U2:52 E 2
of long-range forces is usually tackled using the Ewald sum
[4], a technique for efficiently summing the interaction of an
ion with all its periodic images. It expresses the potential NN -
energy in terms of two convergent summations, one in real Up=2 2 > ollpi—rj+p+dl]).
space and one in reciprocal-lattice space. The results of such
an approach are in the existing literature and are widely used
for three-dimensional5] and single-layer two-dimensional The sum overp is a sum over integerge;,u, with p
[6,7] one-component plasmas. In this paper, we present the L(u1,u,); the prime on this sum indicates that # j, the
calculation and analysis of the Ewald sum for a bilayer SyS-ﬁ:ﬁ term is to be omitted, ang(r)=e?/r is the Coulomb
tem. Our formulas yield the appropriate potential and forcespotential withr subjected to the minimum imaging conven-
under periodic boundary conditions and minimum imagingtjon.
convention, and thus can be used in a MD or MC computer
simulation study of such a system.

e(|pi—p;+PD), D

A. Review of single-layer system

Il. METHOD The potentialU,; which involves electrons in one plane
' has been treated by the Ewald method. We will review the
The system consists of electrons obeying classical statigpertinent details here for completeness, and as a precursor to

tics, and charge neutrality is ensured by a uniform positiveour solution of the bilayer problem. We use dimensionless
background. The electrons are distributed in two planesguantities: distances in units of the Wigner-Seitz radiasid
separated by a constant distance, but each electron is coenergies in units 0é?/a.
strained to move only in the plane of its original distribution.  The potential energy due to interaction between two par-
Let the planes be at=0 andz=d. Consider square cells ticles and their images in the same layer is
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U(rij)zz #{erfo(a|r*i—r*j+l3|) :E E E
5 =1+l ~ =
+erflalfi—F +p 2 - -
( | ! J pl)} ( ) erf(:(K|ﬁi—Fj+d+ﬁ|)+erf(;<|ﬁi—Fj+d+f)|)
X
for any a>0. The second term has two-dimensional petiod |pi—Tj+d+pl
and a Fourier series of the forlﬁgB(g;a)e'g'(ri"J) with

g=2m(\1,\,)/L andg=|g|, where\;,\, are integers, and
for any k>0. The second term is periodic with
1 _erf(ar) .
B(g;a)=fzfjdr . e

1
sz drerflar)2mdy(gr)

o

«Q,

N N
> C(gik,d)>, D edei=r),
5 =i

The coefficients fog#0 are
27 erfdg/2a)

= — if 0, 3
L? g g © 1 (=, erf(e\r®+d?) (2n
C(g;x,d)z—zf arr ———— f dgeigrco
L= Jo Jr2+d?
B0y 2T i erfegl2e) 1 2w .
(00)= L2 ngo g - L% “ f dr —— erf(K\/r2+d2)Jo(gr)
. . 20
The potential energy per cell is then =2 w(g;x,d). )
N S
U 1 NI erfO(a|ri—r,-+D|)_N(N_l)ﬁ Theg=0 term is important and must be treated carefully; it
Y24 A& n-n+pl L2 requires evaluation of ligi.o[gy(g;«,d)—1]/g. This is
N done by reversing the order in a double integral and expand-
T erfo(g/2a) L ing to first order ing:
P2 | 2 2 codg-(fi=Tpl-N ),
970 gi(g; x,d)
©)
f ()= f(K/g)W 2
O
with the Madelung energy term omitted. The parametés \/t2+ d°g* Jr
to be chosen so that both series in E5). converge rapidly;
it is essential that the value df; be independent of the J’ due f gt 2o
choice ofe. We made a careful numerical study of this re- t2+ d2
quirement as described in Sec. lll. Note that the second term
will not contribute to the force. N wd usz tJo(t)
i i — ue
If a is large enoughZ the onI;ll terrjw thaF contributes to the \/; d (o= 2d m
sum in the real space is that wifi=0, so it reduces to the
normal minimum image convention. However, a large value L (g,K)W tJo(t)
of a would imply a large number of terms in the reciprocal =e 99— —f f \/+——2—dQ—2
space sum. In a simulation, the aim is to choose a value of t 9

and a sufficient number a vectors, so that the real-space

sum can be truncated aftérz@ and theg series converges =1-dg- = deu
rapidly. It should be kept in mind that the larger the number

of g vectors, the larger is the time required to compute the ) g
forces on each of the electrons. Thus a compromise between ~ Xe™“ ;z(uz— k?d?) —d?g?~dg|Jo(0) ++ -
the time required for a simulation and the accuracy may be

necessary. 2 o LU
=1-d ——f due (——d +
g Vo p g
B. Two-layer system
The potential energy per unit cell due to the interactions :1_dg_<_eK2d2_d erfoxd) | g+
between charges in different planes is given by \/;K
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two-

dimensional period., and it has a Fourier series of the form
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Thus,
200 T T T T T
yr,d)—1 1 N 4
jim 99D ) e (g 190 \r-space
90 g NET 100 -
50 |- -
Using Egs.(7) and (9), the final result for the potential § e
energy due to interactions between the layers is obtained: 5 0 T 7
= .50 | gspace T R
N N erfC( K|ﬁ| - I?J + d + p)|) 5_1 00 F P =
U= 2 E 2 . o T g (017 E——
poi=li=1  [gi—Fj+d+p] -150 - 1
20 22 -200 -
- derf(kd)+ 250 - /self -
\/;K 300 L—1 1 1 I A

4 6 8 10 12 14 16
ol

E w(g; Kd>2 2 cod§-(pi— )]

g#:O i=1j=1 FIG. 1. Dependence of the potential-energy terms for a single-
(10) layer system onrl; both quantities are dimensionless.

The corresponding single-layer formula can be recovered gjnce it requires fewer terms in thespace sum.

from this by settingd=0, removingi =] terms in the SUMS  The same type of study was performed to confirm the
and counting onlyN particles. Comparing with the single- . ecness of expressigao) for the potential due to inter-

:ayﬁr rlelfu“{hlt ShOl_JId be Inoted thtat while the r_etzalgjs_fpface iermgctions between two layers. We considered two separation
ot & simple or obvious extension of the single-leyer for-0SIaNCeS: =1 (equal to the Wigner-Seltz radjiand d
P g y =0.5. We used. = 20.2 with 128 patrticles in each basic cell;

mula. The second term in E(LO) does not contribute to the diff ¢ P " lected in the two bl Cal
force. Equation(10) and the corresponding force equation Iterent configurations were selected in the two planes. al-

[given in Eq.(11)] are new results and provide an algorithm culations of the terms i, were performed for four values
for a computer simulation of a bilayer system of chargedof the parametek; again we useg= 0 with minimum im-
particles. age in ther-space term. For thg-space term, the integrals

denoted byy(g; «,d) in Eq. (7) were evaluated as required

Ill. NUMERICAL RESULTS for [\|< \/45. Results for a typical bilayer configuration are
given in Table I. The agreement for the total potential using

merically in the following way four values ofx is excellent here, as it is for other configu-
(i) Choose the side length of the basic dalle took L rations. Again, the importance of the self-term is evident and

—20.2, some initial configuration oN particles in it(we  Neglect of 50 terms is justified. Admittedly, thg-space
used 128 and a value of. The value oL corresponds to an terms are small for the chosen configurations; however, the

The single-layer expressidb) for U; was evaluated nu-

areal densityn*=na?=1/. magnitudes of the forces arising from these terms are signifi-
(i) Evaluate the three terms of E) and their sum. cant, and thex independence of the total force has also been
(iii) Repeat for other values ef, and then for other con- checked. We also checked tkéndependence for other equi-

figurations. Excellent agreement confirming thendepen-  librium configurations.

dence of the results was obtained. Figure 1 shows the terms

of U; as a function ofa for aL [5,16] for a certain con- TABLE I. Dependence of potential-energy terms for a bilayer

figuration. Only the|5=5 terms were included in thespace  system on the parameter all quantities in dimensionless units as
term together with the minimum image convention. In thedefined.

g-space term, we took the largest length Yof where §

=2m\/L, to be 45. The agreement of the sum is excellent: KL Ui (rspace Us, (gspace Ug (self Uiz
in fact all aL in [6,16] give U;=—127.235%0.002. This 05 6  360.1994 0.1035 —489.7370 —129.4341
analysis was done for various configurations and for othen.s 8 243.8308 0.1464 —373.4060 —129.4289
equilibrium configurations corresponding to a fixed tempera95 10  175.3547 0.1810 —304.9620 —129.4263
ture. 05 15 87.8669 0.2474 —217.5158 —129.4016
The importance of the self-term is evident. Since the1g g 268.0724 0.1002 —520.8738 —252.7012
r-space terms contaim, the accuracy of these results justifies 1 o g 161.5103 0.1395 —414.3475 —252.6976
neglect of thef)¢6 terms there. The graphs suggest that a1.0 10  102.3801 0.1679 —355.2451 —252.6970
choice of aL between 8 and 12 would be practical for 10 15 35.7422 0.2167 —288.6396 —252.6808

molecular-dynamics calculations: a smalleris preferred,
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IV. CONCLUSION wheres§;;=F,—F;+p anddy;=F,— ;+d+p.
The correctness of Eq10) having been confirmed, one These results suggest that a good choice of the parameters

can now use Eqg1), (5), and(10) to obtain the total force @ andk is 8/L. Further work has shown that for this choice,
on a particle due to particles in the same plane and in thacceptable accuracy can be obtained usi@g for the larg-
other plane. For example, the result for particle 1 in plan®5t|ﬁ|; this corresponds to taking 38 terms in thespace

z=0is sums in the expressions for potential energy and the forces
- on the particles. At each instant considered in a dynamics
F(ri)= _Vfl(Ul“L U1 calculation, the force acting on each dfl Darticles must be
N computed: itgy-space component contain2 1 terms for
2T 1 g N . ..
= E g’|_erfg< _) E sing- (Fy—7;) every vgctorg included. Obwous_ly, it is important to keep
L? G40 ali=2 the maximumg as small as possible.
\ This paper was prompted by a need for molecular-
oL , dynamics calculations for an interacting bilayer plasma at
+z//(g;;<,d)§1 S'”g'(rl_PJ‘)] +Z different separations. We now have the appropriate expres-
: P sions for the potential energy and forces required for such a
N 3 2 - study. Multilayer systems can also be studied using generali-
2 — erfc(a|§1j|)+a|§ij| — e~ lsjl zations of these formulas.
j=1 |51j| \/;
N >
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